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Abstract

Numerical simulations are performed of dispersion and polydispersity of particles in isotropic
incompressible turbulence. The mass loading of the particles is assumed to be small; thus the e�ects of
particles on turbulence is neglected (one-way coupling). A stochastic model is employed to simulate the
carrier phase. The results of the simulations are compared with direct numerical simulation (DNS) data
and theoretical results. The stochastic model predicts most of the trends as portrayed by DNS and
theory. However, the continuity e�ect associated with the crossing trajectories e�ect is not captured.
Also, the peaking in the variation of the particle asymptotic di�usivity coe�cient with the particle time
constant is not observed. For evaporating particles, the stochastic model predicts thinner probability
density functions (pdfs) for the particle diameter as compared with DNS generated pdfs. The model is
implemented to investigate the e�ects of gravity on evaporation. It is shown that the depletion rate
increases with increase of the drift velocity at short and intermediate times, but an opposite trend is
observed at long times. The standard deviation and skewness of the particle diameter indicate peak
values in their variations with the drift velocity. Dispersion of evaporating particles decreases with respect
to that of non-evaporating particles at small drift velocities; an opposite trend is observed at large drift
velocities. The e�ects of the initial evaporation rate and the particle Schmidt number on the evaporation
in the gravity environment are also studied. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In stochastic modelling of particle-laden ¯ows, an ensemble of physical particles is
considered in conjunction with some assumptions pertaining to the turbulent ¯ow ®eld. The
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particles can be considered as ``Monte Carlo'' computational elements which are expected to
portray the physics of turbulent dispersion in a statistical manner. In this way, the ¯ow ®eld is
not exactly calculated; rather its stochastic ``realizations'' are attempted. One of the early
stochastic models of turbulent dispersion is due to Gosman and Ioannides (1981). In this
model, the turbulence is assumed to be isotropic and to have a Gaussian pdf with the variance
of 2k/3, where k is the turbulence kinetic energy. The ¯uctuating ¯uid velocity along the
particle trajectory is randomly sampled from the Gaussian pdf and the particle is allowed to
interact with an eddy over a time interval which is the minimum of two time scales: the
turbulent eddy life-time, and the residence time of the particle within the eddy. This model was
also implemented by Shuen et al. (1983, 1985) and Solomon et al. (1984) to predict particle-
laden jets, and by Graham and James (1996), who discuss the e�ects of the model parameters
and the initial conditions.
The model of Gosman and Ioannides (1981) does not account for the temporal correlations

and directional anisotropies associated with turbulent ¯ows. This could result in some
inaccuracies in capturing some of the well-established features of dispersion, such as the
crossing trajectories e�ect. An improved model is proposed by Ormancey and Martinon (1984)
which accommodates for both the temporal and the spatial structures of turbulence. In this
model, the trajectories of massless ¯uid particles are constructed by integrating their
Lagrangian equations. Associated with each ¯uid particle is a ``¯uid domain'' centered at the
¯uid particle location. A heavy particle can follow a ¯uid domain or can move from one ¯uid
domain to another, accounting for the e�ect of crossing trajectories. Within the ¯uid domain,
the ¯uid velocity ¯uctuation at the particle location is taken from a random sample with
speci®ed one- and two-point correlations. A particle remains within one ¯uid domain as long
as its distance from the ¯uid particle is smaller than some pre-de®ned length, or until the
turbulent structure around the ¯uid particle vanishes by exceeding the random life-time of the
¯uid domain. The sizes and life-times of ¯uid domains are determined by length and time
scales of turbulence. A similar model is proposed by Berlemont et al. (1990, 1991). However,
this latter model allows the choice of di�erent shapes for the correlation function, in contrast
to the model of Ormancey and Martinon (1984) in which the shape of the Lagrangian
correlation function is a consequence of the stochastic process used. Parthasarathy and Faeth
(1990) use a stochastic model to predict dispersion of particles in self-generated homogeneous
turbulence. This model is based on the idea of time series analysis of Box and Jenkins (1976)
to satisfy the mean and ¯uctuating velocities and Lagrangian time correlations of the velocity
¯uctuations. Parthasarathy and Faeth (1990) report good agreement between the model
predictions and experimental data.
In this work, we consider the stochastic model proposed by Lu (1995). This model, similarly

to that of Ormancey and Martinon (1984), accounts for the temporal and spatial correlations.
However, instead of constructing the trajectories of ¯uid particles through the correlations at
several time steps, only the correlation between two successive time steps is considered. As a
result, the implementation of the model is somewhat easier and requires less bookkeeping
e�ort. Also, by using the Eulerian (as opposed to the Lagrangian) autocorrelation, the model is
capable of producing the same trend for the variation of the particle di�usivity coe�cient as
those predicted by theory (e.g. Pismen and Nir, 1978). Lu (1995) reports good agreements
between the model predictions and experimental data of Snyder and Lumley (1971). Here, we
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assess the performance of the model via comparisons with DNS data of Mashayek et al. (1997)
and theoretical results of Mei et al. (1991) in isotropic incompressible particle-laden turbulent
¯ows. The model is also implemented to investigate the e�ects of gravity on polydispersity of
evaporating particles. The stochastic model is brie¯y described in Section 2, following the
problem formulation. The model predictions are compared with the results of DNS and theory
in Sections 3 and 4, respectively. In Section 5 the e�ects of gravity on evaporation is analyzed
followed by the summary and concluding remarks in Section 6.

2. Formulation

We consider the motion of spherical particles in an incompressible and isotropic turbulent
¯ow. It is assumed that the dispersed phase is very dilute, thus the e�ect of particles on the
carrier ¯uid is negligible. The momentum equation for each particle is considered in the
Lagrangian frame of reference. In general, this equation contains the Stokes drag, the Basset
force, the force due to ¯uid pressure gradient, the inertia force of added mass, and the gravity
(Maxey and Riley, 1983). However, if the ratio of the density of the particle to the density of
the carrier ¯uid is large, the inertia, the Stokes drag, and the gravity forces are dominant and
the other forces can be assumed negligible. With this assumption the governing equations for a
single particle are expressed as

dv

dt
� 18m

rpd2
p

�uÿ v� � ge �1�

dX

dt
� v �2�

where u and v (boldface indicates vector) denote the ¯uid velocity at the particle location and
the particle velocity, respectively; t is time, X is the center position of the particle, e is the unit
vector in the gravity direction, g is the gravity constant; rp and dp denote the particle density
and diameter, respectively; and m is the ¯uid viscosity. All the variables are normalized by
reference scales of length, L0, velocity, U0, and density, r0. Later in this paper we also consider
a modi®ed Stokes drag relation for large particle Reynolds numbers.
In the simulations of non-evaporating (solid) particles, the particle diameter remains

constant. For evaporating particles, the rate of diameter reduction is modeled by the d 2-law
(Turns, 1996)

d2
p � d2

p0 ÿ kt �3�
where dp0 is the initial diameter of the particle and the depletion rate is given by: k=8G
ln(1+BM)CRe, where G is the mass di�usivity coe�cient and BM is the transfer number
(Spalding, 1953). The parameter CRe=1+0.3Re 0.5p Sc 0.33p is a correction factor to account for
the convective e�ects (Ranz and Marshall, 1952) with Rep and Scp representing the particle
Reynolds and Schmidt numbers, respectively. The ¯ow is assumed isothermal and evaporation
is due to a constant temperature di�erence between the drop and the ¯uid. This model is in
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accord with that of several laboratory experiments (e.g. Shearer et al., 1979). In a dilute ¯ow,
the ratio of the mass of the particle to the mass of the carrier ¯uid is very small and it is
assumed that the particles are in contact with the carrier ¯uid during evaporation. Therefore,
the transfer number BM is the same for all the particles, and the variation of k is only due to
the parameter CRe. A relation for the ``particle time constant'' (tp) is obtained from Eq. (3)

tp�t� �
rpd

2
p

18m
� tp0 ÿ tet �4�

where tp0=(rpd
2
p0)/18m denotes the initial particle time constant, and

te � te0CRe; te0 �
4rpG
9m

ln�1� BM� �5�

For convenience, the largest evaporation rate is chosen such that the particle velocity
autocorrelation approaches zero by the time tp=0.1tp0 (about 3.1 eddy turnover times).
Therefore: te0=0.9tec/3.1=0.29tec where tec is introduced to relate the evaporation rate to the
initial particle time constant. It should be mentioned that the parameter tec does not bear a
speci®c physical signi®cance. It is only produced from a computational point of view to insure
that very small values of the particle time constant are not encountered during the simulations.
By introducing a drift velocity, udr= tp0g, Eq. (1) is expressed as

dv

dt
� 1

tp
�uÿ v� � 1

tp0
udre �6�

The particle Reynolds number is de®ned as: Rep=(rfdpvuÿ vv)/m with rf denoting the carrier
¯uid density. Following Wang and Maxey (1993) the Reynolds number is related to the ¯ow
Kolmogorov time scale (tk) and velocity scale (uk) with n= tku

2
k, where n= m/rf is the ¯uid

kinematic viscosity

Rep � 18tp
nrp=rf

 !1=2

juÿ vj � 4:243
rf
rp

 !1=2
tp
tk

� �1=2juÿ vj
uk

�7�

For large particle Reynolds numbers a ``modi®ed'' Stokes drag must be used. The modi®cation
is in the form of an empirical correction factor which is multiplied by the Stokes drag relation.
The empirical correction factor is described as a function of the particle Reynolds number
( f(Rep)) and can be easily implemented in Eq. (6) by replacing tp with a modi®ed particle time
constant, t *

p= tp/( f(Rep)). A variety of relations for f(Rep) is available (Clift et al., 1978); here
we use

f�Rep� � 1� 0:15 Re0:687p �8�
The particles can be tracked in the Lagrangian frame by integrating Eqs. (6) and (2) provided
that the ¯uid velocity at the particle location is known. Here, we use the stochastic model
proposed by Lu (1995) to simulate the ¯uid velocity. The rudiments of the model are taken
from the methodology of time series analysis (Box and Jenkins, 1976). Let the coordinate
system move with the mean velocity; thus, only the ¯uctuating velocities are considered. The
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particle position, Xi(0), i=1, 2, 3 and velocity, ui(Xi(0), 0), are given at the starting time t=0.
The initial ¯uid velocity, ui(Xi(0), 0), at the particle location is extracted from a random
Gaussian seed with the standard deviation u 0 (assumed to be known a priori). Then, the
particles are moved to their new positions, Xi(Dt) (Dt is the time increment), using a second-
order Runge±Kutta method. In order to advance the calculations for the next time step, the
¯uid velocity, ui(Xi(Dt), Dt), at the new particle location must be found. By the time particles
arrive at their new locations, the ¯uid velocity at the old particle location changes to ui(Xi(0),
Dt). To relate the old and the new ¯uid velocities at Xi(0), the Eulerian velocity autocorrelation

Faa�Dt� � hwa�Xa�0�; 0�wa�Xa�0�;Dt�i
hwa�Xa�0�; 0�wa�Xa�0�; 0�i ; a � 1; 2; 3 �9�

(with no summation over repeated Greek indices) is used, where wi=ui/u
0 is the normalized

velocity and h i indicates the ensemble average. It is also necessary to account for the spatial
separation between the ¯uid particle and the heavy particle locations through the Eulerian
spatial correlation

Gaa�Ds� � hwa�Xa�0�;Dt�wa�Xa�Dt�;Dt�i
hwa�Xa�0�;Dt�wa�Xa�0�;Dt�i ; a � 1; 2; 3 �10�

where Ds= vX(Dt)ÿ X(0)v is the distance between the old and the new particle locations. To
use Eq. (10), it is necessary to re-orient the coordinate system such that one of the axes
coincides with X(Dt)ÿ X(0).
By de®ning autoregressive processes (Box and Jenkins, 1976) (in time) for wi(Xi(0), 0) and

wi(Xi(0), Dt), and (in space) for wi(Xi(0), Dt) and wi(Xi(Dt), Dt), with some algebraic
manipulations, Lu (1995) obtains

wa�Xa�Dt�;Dt� � aabawa�Xa�0�; 0� � ga; a � 1; 2; 3 �11�
where aa=Faa(Dt), ba=Gaa(Dt) and ga is a Wiener process which is determined by its
variance, sga=

������������������
1ÿ a2ab2a

p
. Once the ¯uid velocity at the new particle location is determined

using Eq. (11), the steps described above are repeated and the particle trajectory is constructed.
The following relations are used for the Eulerian temporal and spatial correlations (Lu,

1995): Faa(Dt)=exp(ÿDt/tE), G11(Ds)=exp(ÿDs/L1), G22(Ds)= G33(Ds)=exp(ÿDs/L2), where
tE is the Eulerian integral time scale and L1 and L2 are the Eulerian integral length scale in the
longitudinal and transverse directions, respectively. In isotropic incompressible ¯ows, these are
estimated by:

tL � C
�u0�2
E
; tE � tL

C2
; L1 � 2L2 � C3tLu0;

where tL is the Lagrangian integral time scale, E is the dissipation rate, and C1=0.212,
C2=0.73, C3=2.778. The values used for C1 and C3 are the same as those suggested by Lu
(1995). The value of C2 is larger than that used by Lu (1995), and is the upper limit found in
the literature (Hinze, 1975). The results produced by C2=0.73 are within approximately 10%
of those obtained using the value proposed by Lu (1995) and indicate better agreements with
the results of theory and DNS.
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With this formulation, the values of the ¯uid turbulence intensity and dissipation rate of the
turbulence kinetic energy are model inputs. The values u 0=0.0185 and E=3.987�10ÿ6 are
taken from DNS of Mashayek et al. (1997). For these values, the length scale is conveniently
chosen such that the normalized size of the simulation box for DNS is 2p, the velocity scale is
found from the box Reynolds number, Re0=(r0U0L0)/m0, and the ¯uid density is used as the
scale for density. In the presentation of results, the particle variables are normalized by ¯uid
variables. The choice of the time step depends on various parameters such as the Eulerian
integral time scale and the particle time constant. Lu (1995) elaborates on the sensitivity of the
model to the time step and (via extensive simulations) ®nds the range of Dt for which the
results become independent of the time step. For the cases presented in this paper,
the appropriate time step is found by performing numerical experiments with various Dt.
Similar to ®ndings of Lu (1995), our trial simulations indicated that the results vary negligibly
for a wide range of variation of the time step. In all cases, 253 particles are tracked.

3. Model assessment via comparison with DNS

Recently, Mashayek et al. (1997) have performed extensive DNS to investigate dispersion
(and polydispersity) of solid (and evaporating) particles in stationary isotropic incompressible
turbulence. This con®guration provides an ideal setting for the assessment of the stochastic
model. In this section, the DNS results of Mashayek et al. (1997) are used for this assessment.
In doing so, the primary consideration is to re-scale the DNS generated time and velocity
scales to those of stochastic simulations via (Elghobashi and Truesdell, 1992):

tp
tE

�
DNS

� tp
tE

�
STH

and
tg
tE

�
DNS

� tg
tE

�
STH

where tg=dp/udr is the drift timescale and STH refers to stochastic simulation. The reasoning
for considering the ¯uid eddy turnover time for scaling is discussed by Elghobashi and
Truesdell (1992). This adjustment is necessary as the stochastic model, by nature, is designed
for Reynolds numbers higher than those attainable by DNS.

3.1. Dispersion of solid particles

First, we consider dispersion of solid (non-evaporating) particles. In Fig. 1 the particle
velocity autocorrelation coe�cients,

Rp
aa�t� �

hua�0�ua�t�i
hu2a�0�i

; a � 1; 2; 3 �12�

as generated by DNS are compared with those by stochastic simulations for various particle
time constants. For direct comparisons with DNS results, the particle time constant and the
drift velocity are expressed in terms of the Kolmogorov time and velocity scales, respectively.
In the absence of gravity, Fig. 1a shows that the agreement between the particle velocity
autocorrelations is very good for large particles. However, as the particle time constant is
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decreased, the results of stochastic simulations deviate from DNS results. At very small particle
time constant (tp=0.4tk) the stochastic model underestimates DNS results at short times and
overestimates them at longer times. The agreement is weaker in the presence of gravity (Fig. 1b
for udr=5uk) and signi®cant deviations are observed for all particle time constants. It appears
that the stochastic model does not predict the negative loops in the particle velocity
autocorrelation curve. These loops are due to the continuity e�ect (Csanady, 1963) associated
with the crossing trajectories e�ect. Therefore, while the e�ects of crossing trajectories are
portrayed (as witnessed by the decrease of the particle velocity autocorrelation coe�cient with
the increase of the drift velocity), the continuity e�ects are not captured by the model.
The particle turbulence intensities calculated from the stochastic model are compared against

DNS data for a variety of particle time constants and drift velocities in Fig. 2. These quantities

Fig. 1. Temporal variations of the particle velocity autocorrelation coe�cient from the stochastic and direct
numerical simulations. (a) In the absence of gravity, R p=1

3(R
p
11+R p

22+R p
33). (b) For udr=5uk, in the direction

normal to the gravity direction.
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are time averaged (indicated by an overbar) over more than three eddy turnover times in both
simulations. As expected, with the increase of the particle's inertia, its tendency to follow
turbulent ¯uctuations is diminished and the particle turbulence intensity is decreased. Also, the
increase of the drift velocity results in the decrease of the particle turbulence intensity due to
the crossing trajectories e�ect. The general trends shown in Fig. 2 have been observed by
others (see e.g. Snyder and Lumley, 1971; Wells and Stock, 1983; Mei et al., 1991). Fig. 2
indicates that the agreement between the model predictions and DNS results is good in both of
the directions parallel and normal to the gravity direction. No apparent preference towards
either small or large particles is observed. This is interesting as the scaling between the two
simulations is based on the large scale eddy turnover time and the smaller particle time
constants are of the order of the Kolmogorov time scale. Also, the good agreement observed in

Fig. 2. Particle turbulence intensity from stochastic simulations and DNS, in the direction (a) normal and (b) parallel
to the gravity direction.
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the presence of gravity indicates that the incapability of the stochastic model to account for the
continuity e�ects does not a�ect the calculation of the particle turbulence intensity.
Fig. 3 presents the asymptotic particle turbulence di�usivity coe�cient, E p=D p(t41), in

both the presence and the absence of gravity. In accord with DNS, the particle di�usivity
coe�cient, D p(t)= [D

p
11(t)+ D

p
22(t)+ D

p
33(t)]/3, is determined by (Hinze, 1975)

Dp
aa�t� � hu2a�0�i

�t
0

Rp
aa�t�dt �

�t
0

hua�0�ua�t�idt a � 1; 2; 3 �13�

The results (not shown) for the di�usivity coe�cients of the ¯uid particle surrounding the
heavy particle exhibit similar trends to those observed in Fig. 3. The asymptotic values are

Fig. 3. Particle asymptotic di�usivity coe�cient from stochastic simulations and DNS in the direction (a) normal

and (b) parallel to the gravity direction.
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calculated based on a ``®nite'' time (about 3.5 eddy turnover times) in both DNS and
stochastic simulations. The results in Fig. 3 show that, contrary to the particle turbulence
intensity, the asymptotic particle di�usivity coe�cients are predicted with some deviations from
those calculated by DNS. The extent of deviation is increased as the particle time constant is
decreased. This is not an artifact of using a ®nite time to calculate the asymptotic values, as
with the decrease of the particle time constant the velocity autocorrelation approaches zero in
a shorter time. Therefore, the asymptotic values are reached in a shorter time and smaller
deviations are expected at smaller particle time constants. Fig. 3 shows that the general trends
in the variations of the particle di�usivity coe�cient with the drift velocity are captured by the
stochastic model. However, the model does not predict the peak value in the variation of the
particle di�usivity coe�cient with the particle time constant. The peak value in DNS occurs for
particle time constants of the order of the Kolmogorov time scale and is due to the increase of
the e�ects of the preferential collection of particles in high strain regions of the ¯ow at these
small particle time constants. This suggests that this model can be more safely used for particle
time constants of the order of the larger time scales of the ¯ow.

3.2. Polydispersity of evaporating particles

When the particles evaporate, their interaction with the carrier ¯uid results in a distribution
of particle sizes. This is the case even if initially all the particles are of the same size. Since the
evaporation rate is strongly controlled by the instantaneous particle Reynolds number, it is
instructive to ®rst consider the temporal variations of the particle Reynolds number for non-
evaporating particles at di�erent particle time constants. Fig. 4 provides a comparison between
the particle Reynolds numbers calculated using the stochastic model with those from DNS. By
examining this ®gure it is realized that: (i) the initial time required by the particles to reach the

Fig. 4. Temporal variations of the mean particle Reynolds number for nonevaporating particles as calculated by
stochastic and direct numerical simulations, in the absence of gravity.
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stationary condition is much shorter in the stochastic simulations. (ii) For large particles, an
overshoot is observed in the temporal variations of the particle Reynolds number, the
extent of which is increased with the increase of the particle time constant. The stochastic
model predicts a much smaller overshoot at the same particle time constant. (iii) The
stationary values of the particle Reynolds number predicted by the stochastic model are
larger than those via DNS. More importantly, the deviation observed between the
stationary values depends on the particle time constant; the smaller the particle time
constant the larger the deviation.
The in¯uences of physics as itemized by (i)±(iii) are discussed by considering the temporal

variations of the mean and higher order moments of t 1/2p . This parameter is chosen since it is
proportional to the particle diameter. First, we consider the temporal variations of the mean,
the minimum, and the maximum values of (tp/tp0)

1/2 for a case with tp0=5tk, tec=5tk, and
Scp=5. The particles are initially injected into the ¯ow with identical sizes and with the same
velocity as that of their surrounding ¯uid elements. The particles are allowed to evaporate until
the diameter of the smallest particle reaches 5% of its initial value at which time the simulation
is terminated. Very small sizes are not considered to avoid the excessive computational
requirements for particle tracking. Fig. 5 shows that the stochastic model predicts the mean
diameter value very closely to DNS, especially during short and intermediate times. However,
the minimum and maximum particle sizes predicted by the model deviate from those calculated
by DNS. This can be explained by considering the variation of the particle Reynolds number
with the particle time constant in Fig. 4. When the particle time constant varies from 0.4tk to
5tk the stationary values of the particle Reynolds number is increased by a factor of 019 in
DNS and 08.3 in the stochastic simulations. Therefore, for the same size distribution, DNS
predicts a much wider variation of the particle Reynolds number. Consequently, the variations
of the evaporation rate is larger in DNS and a broader size distribution results. This also

Fig. 5. Temporal variations of the minimum, the mean, and the maximum values of (tp/tp0)
1/2 as calculated by

stochastic and direct numerical simulations, tp0=5tk, tec=5tk, and Scp=5.
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explains the sharper decrease of the minimum particle diameter at long times in DNS. It is
noted that for a constant rate of change of tp (which is a reasonable assumption for the case
considered here), (d/dt)(t 1/2p )0 (constant/t 1/2p ). Therefore, the rate of the diameter decrease
becomes larger as the size of the particle is reduced.
Based on the discussion above, it is expected that the stochastic model predicts a

narrower (thinner) size distribution than does DNS. This is evident in Fig. 6 which
portrays the temporal variations of the standard deviation (s) of t 1/2p for several Scp
values. This ®gure shows that the stochastic model signi®cantly underpredicts the standard
deviation at intermediate and long times, although it is capable of predicting the right
trend of variation with the particle Schmidt number. Three di�erent regions are
distinguished for each of the curves. The ®rst region, for short times (t/tE<0.2),
corresponds to the interval that the particle velocity is nonstationary. This period is
characterized by small rates of growth of the standard deviations of t 1/2p as the particles
are initially released with the same velocity as that of the surrounding ¯uid and the particle
Reynolds number takes small values. Since the stochastic model predicts a larger variation
of Rep with the particle time constant in this nonstationary period (cf. Fig. 4), the standard
deviations are higher in stochastic simulations during the initial short timesÐthis is veri®ed
by considering the values near t=0. In the second region (0.2< t/tE<2), the particle
Reynolds number adopts large values and the standard deviation increases more rapidly. In
this region, the stochastic model underpredicts the DNS results as the model yields a
smaller variation for the particle Reynolds number with the particle time constant. The
third region (t/tE>2) is speci®ed by the largest growth rates for the standard deviation. It
is clearly seen in Fig. 6 that the model does not predict growth rates as large as those in
DNS. This can be explained by the same argument provided earlier to explain the
variations of the particle diameter at ®nal times.

Fig. 6. Temporal variations of the standard deviation of t 1/2p as calculated by stochastic and direct numerical
simulations at di�erent particle Schmidt numbers. tp0=5tk and tec=5tk.
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Fig. 7 shows the temporal variations of the skewness and kurtosis of t 1/2p for particles with
tp0=5tk and Scp=1 at two initial evaporation rates tec=5tk and tec= tk. The particles have
initially zero velocity relative to the surrounding ¯uid; therefore, there is an initial time for the
skewness and the kurtosis to reach stationary levels. In DNS, this time is about 2.5tE which is
about the same time required by nonevaporating particles to reach a stationary state (Fig. 4).
The corresponding initial time in the stochastic simulations is about one eddy turnover time.
As a result, the short time variations of both the skewness and the kurtosis are very di�erent in
DNS and stochastic simulations. At long times, for the case with smaller evaporation rate, the
prediction of the stochastic model for the kurtosis is in good agreement with DNS results.
However, the stochastic model underestimates the skewness values; it predicts a negative
skewness throughout the duration of evaporation.
In general, the stochastic model predicts a narrower pdf of the droplet size than that

obtained by DNS. This has a major impact on the evolution of the pdf when there is an initial
size separation between the particles. In order to elaborate on this issue, we consider cases in
which the initial particle size distribution consists of two distinct uniform-size groups of
particles (i.e. the pdf of t 1/2p is double delta). In all of the cases, the particles are initially
injected into the ¯ow with a zero velocity relative to the local ¯uid, htp0i=5tk, and Scp=1.
Fig. 8 shows the temporal evolution of the kurtosis of t 1/2p for cases with di�erent initial
standard deviations. After the onset of evaporation, there is a time delay before the two
initially segregated branches of the pdf merge, resulting in the increase of the kurtosis. Fig. 8
indicates that this initial time delay depends on the initial separation between the two groups
of particle sizes. As expected, the increase of this separation (the increase of s0) delays the
merging. The stochastic model predicts a slower merging for all of the cases. This is due to the
fact that the pdfs of each group of particles are predicted to be narrower (at any instant of
time) in comparison to DNS.

Fig. 7. E�ects of the initial evaporation rate on the temporal variations of the skewness and kurtosis of t 1/2p as

calculated by stochastic and direct numerical simulations, tp0=5tk and Scp=1.
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4. Comparison with theory

Mei et al. (1991) obtain a solution for the particle turbulence intensity and di�usion
coe�cient by assuming the form of the spectral density function as proposed by Kraichnan
(1970). They consider contributions of all the forces acting on the particle but show that only
the Stokes drag and the Basset forces need to be retained. In this section, their ®nal results for
cases in which the Basset force is neglected are compared with those predicted by the stochastic
model.
The variations of the particle turbulence intensity with the particle time constant and the

drift velocity are shown in Fig. 9. This ®gure indicates that the predictions via the stochastic
model are in good agreement with those based on the theory for wide ranges of the particle
time constant and the drift velocity. The stochastic model slightly underestimates the results via
the theory in the absence of gravity while overpredicting these results at large drift velocity.
The agreement between the two results diminishes with the decrease of the particle time
constant. These trends are observed in both of the directions normal (Fig. 9a) and parallel
(Fig. 9b) to the gravity direction. However, it must be emphasized that the predictions of the
stochastic model is sensitive to the magnitude of C2; values smaller than 0.73 were found to
produce larger deviations from the theory.
In Fig. 10, comparisons are made between the predictions via the model and the theory for

the asymptotic particle di�usivity coe�cient at di�erent drift velocities. The particle di�usivity
coe�cient is evaluated from (Hinze, 1975)

Dp
aa�t� �

1

2

d

dt
hX2

a�t�i a � 1; 2; 3 �14�

The overall agreement is good. The stochastic model is capable of predicting the variations of
the particle di�usivity coe�cient with the drift velocity and with the particle time constant. In

Fig. 8. Temporal variation of the kurtosis of t 1/2p for di�erent initial standard deviations as calculated by stochastic
and direct numerical simulations. htp0i=5tk and tec=5tk.
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both the gravity and no-gravity directions, e p increases with the increase of the particle time
constant when the drift velocity is small. The increase of the drift velocity tends to diminish the
variations of e p with the particle time constant; an e�ect observed more strongly in the
direction normal to the gravity direction.
As pointed out by Lu (1995), some of the earlier stochastic models do not correctly predict

the increase of the long time particle di�usivity coe�cient with the increase of the particle time
constant. This is due mainly to the use of the ``Lagrangian'' autocorrelation. In order to show
this, we also consider a Lagrangian stochastic model proposed by Lu et al. (1993). The results
of the simulations are presented in Fig. 11 and indicate a decreasing trend for the long time
particle di�usivity coe�cient at zero gravity. The variations of e p at higher drift velocity values
are, however, predicted correctly. In both the gravity and no-gravity directions the particle
di�usivity coe�cient becomes rather insensitive to the variations of the particle time constant.

Fig. 9. Particle turbulence intensity from stochastic simulations and theory (Mei et al., 1991) in the direction
(a) normal and (b) parallel to the gravity direction.
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It must be added here that the parameter C2 does not appear in the Lagrangian model.
However, the values of the particle di�usivity coe�cient are indirectly dependent on C2 as it
relates tp to the ``variable b'' as used by Mei et al. (1991). Of course, C2 only a�ects the
magnitude of the particle di�usivity coe�cient and does not change the decreasing trend
observed at zero gravity.
The results presented in Figs. 9±11 are based on the assumption of Stokes drag with no

modi®cation for large particle Reynolds numbers. This assumption is necessary for comparison
with the theoretical results of Mei et al. (1991) which are also based on the same assumption.
However, in several of the cases the particle Reynolds number signi®cantly exceeds unity. This
will a�ect the particle intensity and di�usivity coe�cient. In order to quantify these e�ects, in
Table 1 the percentage relative di�erences between the results obtained with a modi®ed drag
relation (given in Eq. (8)) and those presented earlier based on the Stokes drag are provided.

Fig. 10. Particle asymptotic di�usivity coe�cient from stochastic simulations and theory (Mei et al., 1991) in the
direction (a) normal and (b) parallel to the gravity direction.
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As expected, the particle Reynolds number increases with the increase of the particle time
constant and/or the drift velocity, resulting in larger deviations for the particle intensity and
di�usivity coe�cient at larger tp and udr values. It is noted that the particle di�usivity
coe�cient is predicted with a much smaller error than that associated with the particle
intensity. This behavior is mostly due to the higher sensitivity of the particle intensity to the
particle time constant. Regardless of the magnitude of the drift velocity, the particle intensity
and di�usivity are predicted with comparable errors when the value of the particle time
constant is small (tp=0.1tE).

Fig. 11. Comparison of the results of the Lagrangian stochastic model and theory (Mei et al., 1991) for the particle
asymptotic di�usivity coe�cient.

Table 1
E�ects of the modi®ed Stokes drag on the particle turbulence intensity and di�usivity. Subscripts ``m'' and ``um''
refer to the calculations based on the modi®ed and unmodi®ed (Stokes) drag, respectively. The particle intensity and

di�usivity coe�cient in cases with nonzero drift velocity belong to the gravity direction

tp
tE

udr
u0 hRepi hu 2

miÿhu 2
umi

hu 2
umi

� 100 hE pmiÿhE pumi
hE pumi

� 100

0.1 0 0.22 0.8 0.0
0.4 0 0.69 4.4 0.7
1.6 0 1.86 16.0 1.4

8.0 0 4.83 42.0 2.0
0.1 2 0.72 2.6 2.3
0.4 2 1.40 10.4 4.9
1.6 2 2.83 30.7 6.0

8.0 2 6.21 76.5 13.5
0.1 5 1.62 6.3 7.8
0.4 5 2.90 24.0 11.0

1.6 5 5.24 67.7 19.4
8.0 5 10.19 153.2 32.8
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5. E�ects of gravity on evaporation

We now consider the e�ects of gravity on polydispersity of evaporating particles. In all the
simulations considered in this section, the initial value of the particle time constant is ®xed at
tp0=10tk, and a modi®ed drag coe�cient, Eq. (8), is used. The udr values given in this section
refer to the magnitude of the drift velocity at the onset of evaporation. The temporal value of
udr decreases proportional to the decrease of the droplet time constant such that the gravity
constant, g, remains the same throughout each simulation.
Fig. 12 portrays the e�ects of gravity and evaporation on the velocity autocorrelation

coe�cient of both the heavy particle and its surrounding ¯uid particle (indicated by superscript

Fig. 12. Velocity autocorrelation coe�cients of the heavy particle and its surrounding ¯uid particle.
(a) Nonevaporating particles; e�ect of gravity. tp=10tk. (b) Evaporating particles in zero gravity; e�ect of
evaporation rate. tp0=10tk and Scp=0.

F. Mashayek / International Journal of Multiphase Flow 25 (1999) 1575±15991592



``fp''). In Fig. 12a the velocity autocorrelations are given for nonevaporating particles at
di�erent drift velocities. As has been shown in previous studies (Wells and Stock, 1983;
Mashayek et al. 1997) the increase of the drift velocity decreases the velocity autocorrelation of
both the particle and its surrounding ¯uid due to the e�ect of crossing trajectories. Fig. 12b
indicates that evaporation also results in a decrease of the particle velocity autocorrelation; the
higher the evaporation rate, the smaller the particle velocity autocorrelation. This is due to the
decrease of the particle size with evaporation. However, evaporation has virtually no e�ect on
the velocity autocorrelation of the ¯uid. Therefore, the evaporating particle does not change its
surrounding ¯uid as frequently as does the nonevaporating particle in a gravity environment.
The e�ects of gravity on the rate of evaporation are realized from Fig. 13 by considering the

temporal variations of ÿ(d(htpi/tp0))/dt which is proportional to the depletion rate (k in
Eq. (3)). When the nonlinear term in CRe is zero (the case with Scp=0 in Fig. 13), the
evaporation rate is constant as expected. The inclusion of the nonlinear term increases the rate
of evaporation. However, for all of the drift velocities, the rate of evaporation decreases
nonlinearly in time due to the decrease of the particle size and, consequently, the particle
Reynolds number. For short and intermediate times, the evaporation rate increases with the
drift velocity as the particle Reynolds number is increased with the increase of the drift
velocity. The larger evaporation rate at higher drift velocity results in a faster decrease of the
particle size. As a result, a decreasing trend is observed for the variation of the evaporation
rate with the drift velocity at long times.
An interesting behavior is observed in the variations of the standard deviation of t 1/2p with

the increase of the drift velocity. Fig. 14a, for tec=10tk, shows that by increasing the drift
velocity from zero to 2uk, the standard deviation increases at all times. However, further
increase of the drift velocity results in an opposite trend. At large drift velocities the particle
Reynolds number takes large values. This has the e�ect of diminishing the relative di�erences
in the Reynolds number of di�erent particles and results in a narrower t 1/2p pdf. A similar
behavior is observed for the skewness of t 1/2p in Fig. 14b which shows that skewness is largest

Fig. 13. E�ects of the variations of the drift velocity on the depletion rate. tp0=10tk and tec=10tk.
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at udr=5uk. Also, the increase of the drift velocity results in skewness of t 1/2p towards larger
particles. Therefore, with the increase of the drift velocity, ®rst the pdfs become wider and
more skewed towards large particles. Further increase of the drift velocity results in an
opposite trend.
When the rate of evaporation is decreased to tec=1, Fig. 15 shows that the variations of the

standard deviation and skewness of t 1/2p with the drift velocity change signi®cantly. A
monotonic decrease of the standard deviation with the increase of the drift velocity is observed
at intermediate times. The skewness approaches near zero values for all drift velocities, before
it sharply decreases (Fig. 15b). An examination of the standard deviation and skewness of
t 1/2p for cases with Scp=5 revealed no signi®cant di�erence in their variations with the drift
velocity when compared with those with Scp=1.

Fig. 14. E�ects of the variations of the drift velocity on (a) the standard deviation and (b) the skewness of t 1/2p .

tp0=10tk, tec=10tk, and Scp=1.
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Fig. 16 shows the temporal variation of the dispersion h[Xa(t)ÿ Xa(t=0)]2i. This ®gure
indicates that dispersion decreases with the increase of the drift velocity in both of the
directions parallel and normal to the gravity direction. Comparisons with the results of
nonevaporating particles (thin lines) in Fig. 16 reveal that evaporation tends to decrease
dispersion in low gravity environment and to increase it at higher drift velocities. This behavior
is observed in both directions. It is also noted that the di�erence between the results under
evaporating and nonevaporating conditions increases with time for all the drift velocities except
udr=2uk for which dispersion shows no apparent sensitivity to evaporation.
The temporal variations of dispersion for a case with Scp=5 are shown in Fig. 17.

Other parameters are the same as those considered for cases in Fig. 16. A comparison of
these two ®gures reveals that the increase of the particle Schmidt number does not a�ect
dispersion in the direction normal to the gravity direction. However, signi®cant changes are

Fig. 15. E�ects of the variations of the drift velocity on (a) the standard deviation and (b) the skewness of t 1/2p .

tp0=10tk, tec= tk, and Scp=1.
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observed in the gravity direction. The e�ects of the particle Schmidt number on dispersion
in the gravity direction is enhanced by increasing the drift velocity. It is also noted that
similarly to the cases with Scp=1, the case with udr=2uk remains una�ected by
evaporation.

6. Summary and concluding remarks

Results are presented of stochastic simulations of dispersion and polydispersity of particles
in isotropic turbulent ¯ows via the model proposed by Lu (1995). All of the empirical relations
and the model's constant values are set the same as those suggested by Lu (1995). However, a

Fig. 16. E�ects of the drift velocity on the dispersion of both nonevaporating (thin lines) and evaporating (thick
lines) particles in the direction (a) normal and (b) parallel to the gravity direction. tp0=10tk, tec=10tk, Scp=1.
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value larger than that suggested for the ratio of the Lagrangian and Eulerian integral time
scales was necessary.
The predicted results via the model are compared with the results based on DNS (Mashayek

et al., 1997) and theory (Mei et al., 1991). The stochastic model based on the Eulerian
autocorrelation correctly predicts most of the trends observed by theory and DNS. When the
model is constructed with a Lagrangian autocorrelation, the particle asymptotic di�usivity
coe�cient decreases with the increase of the particle time constant, in the absence of gravity.
This trend is opposite of that predicted by the theory. A comparison of the particle velocity
autocorrelation coe�cients simulated by the Eulerian stochastic model with those by DNS
indicates that the continuity e�ect (associated with the crossing trajectories e�ect) is not
captured. Also, the peaking for the variation of the particle asymptotic di�usivity coe�cient
with the particle time constant as observed in DNS is not predicted. When compared with

Fig. 17. E�ects of the drift velocity on the dispersion of both nonevaporating (thin lines) and evaporating (thick
lines) particles in the direction (a) normal and (b) parallel to the gravity direction. tp0=10tk, tec=10tk, Scp=5.
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DNS results, the model predictions exhibit better agreements for large particle time constants.
The stochastic model is also used to quantify the e�ects of a modi®ed drag relation on the
particle turbulence intensity and the asymptotic di�usivity coe�cient. The results suggest that
the particle turbulence intensity is more sensitive to the drag calculations than is the particle
di�usivity coe�cient.
For evaporating particles, the stochastic model predicts thinner particle diameter pdfs than

does DNS. This is mainly due to di�erences in the magnitudes of the particle Reynolds number
in the two simulations. The higher order statistics of the particle size are calculated by the
stochastic model and reasonable agreements are found with DNS. The model is also used to
investigate the e�ects of gravity on evaporation. The depletion rate indicates an increasing
trend with the increase of the drift velocity at small and intermediate evaporation times; an
opposite trend is observed at long times. Furthermore, the variations of the standard deviation
and the skewness of t 1/2p with the drift velocity is not monotonic. For small drift velocities, the
standard deviation and the skewness increase with the increase of the drift velocity; an opposite
trend is observed for large drift velocities.
It is important to note that the con®guration of isotropic turbulence as considered here is

much simpler than that in practical ¯ow con®gurations. Therefore, weaker agreements between
stochastic and DNS/experimental results may be expected when the model is implemented in
inhomogeneous ¯ows, especially those with large strain rates. Also, with extension and
implementation of stochastic models to complex ¯ows the problem associated with the
(non)universality of the empirical constants must be resolved. Another important issue pertains
to the number of particles for statistical sampling. Based on our experience, typically as many
as 15,000 particles are necessary for reliable statistics. This could be a major restriction as in
most of the reported applications of stochastic models to spatially inhomogeneous ¯ows the
total number of particles is signi®cantly lower.
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